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1. INTRODUCTION

In the last decade or so, the lattice Boltzmann (LB) method has emerged
as a new and effective numerical technique of computational fluid dynamics
(CFD).(1-5) Modeling of the incompressible Navier-Stokes equation is
among many of its wide applications. Indeed, the lattice Boltzmann equa-
tion (LBE) was first proposed to simulate the incompressible Navier-
Stokes equations.(1) The incompressible Navier-Stokes equations can

1 Complex Systems Group (T-13), MS-B213, Theoretical (T) Division, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545.

2 Center for Nonlinear Studies (CNLS), MS-B258, Los Alamos National Laboratory, Los
Alamos, New Mexico 87545.

3 ICASE, MS 403, NASA Langley Research Center, 6 North Dryden St., Bldg. 1298, Hampton,
Virginia 23681-0001; e-mail: luo(a icase.edu.

927

0022-4715/97/0800-0927$12.50/0 C 1997 Plenum Publishing Corporation

In this paper a lattice Boltzmann (LB) model to simulate incompressible flow
is developed. The main idea is to explicitly eliminate the terms of o(M2), where
M is the Mach number, due to the density fluctuation in the existing LB models.
In the proposed incompressible LB model, the pressure p instead of the mass
density p is the independent dynamic variable. The incompressible Navier-
Stokes equations are derived from the incompressible LB model via Chapman-
Enskog procedure. Numerical results of simulations of the plane Poiseuille flow
driven either by pressure gradient or a fixed velocity profile at entrance as well
as of the 2D Womersley flow are presented. The numerical results are found to
be in excellent agreement with theory.
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be derived from the lattice Boltzmann equation through the Chapman-
Enskog procedure if the density fluctuation is assumed to be negligible.
Unfortunately, this is not always the case in numerical simulations by using
LBE method. The compressible effect in the existing LBE models may
produce some serious errors in numerical simulations. There have been
efforts to reduce or to eliminate the compressible effect in the LBE
method.(6-8) However, the results are not entirely satisfactory mainly for
the reason that the existing models for incompressible flow are only valid
for steady flows in theory. Therefore, it is still necessary to improve the
LBE method for simulations of the incompressible Navier-Stokes equa-
tions in general, especially for unsteady flows.

Ideally, the incompressibility can be achieved only when the mass den-
sity becomes a constant. However, it is practically impossible to maintain
a constant density in lattice Boltzmann models. Theoretically the lattice
Boltzmann equation always simulates the compressible Navier-Stokes
equation instead of the incompressible one, because the spatial density
variation is not zero in LBE simulations. In order to correctly simulate the
incompressible Navier-Stokes equation in practice, one must ensure that
the Mach number, M, and the density variation, 8p, are of the order O(s)
and O(s2), respectively, where £ is the Knudsen number.(9) However, in
numerical simulations such as flow through porous media, a pressure
gradient is applied to drive the system, and the pressure gradient is estab-
lished by maintaining a density gradient in the system. Moreover, this is
the only way to implement the boundary condition of a pressure gradient
in the system by using the method of the LBE or the lattice gas automata
(LGA), because of the simple ideal gas equation of state of the system, and
because pressure is not an independent dynamical variable in the LBE or
LGA methods. Under this circumstance, the assumption of constant
density is no longer valid and the magnitude of the density variation may
be rather significant. This would inevitably bring in an error in the LBE
simulations of the incompressible Navier-Stokes equations.

Historically, in the context of the lattice gas automata (LGA)(6) the
incompressibility is achieved by rewriting the Navier-Stokes equation in
terms of the momentum density j = pu rather than the velocity «. The same
idea has been applied to LBE models for Burgers' equation(7) and the
Navier-Stokes equation.(8) Although this approach seems to provide some
good numerical results for steady flows, its validity for unsteady flow is
unknown.

It is well known that the lattice Boltzmann method is only applicable
to the low Mach number hydrodynamics, because a small velocity expan-
sion is (implicitly) used in derivation of the Navier-Stokes equation from
the lattice Boltzmann equation. It should be noted that the small Mach
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number limit is equivalent to the incompressible limit. Thus, it should be
possible to develop a lattice Boltzmann model to simulate the incom-
pressible Navier-Stokes equation properly. In this paper, a lattice Boltzmann
model for the incompressible Navier-Stokes equation is developed. The
basic idea is to explicitly eliminate the compressible effect by neglecting the
terms of higher order Mach number, specifically, the terms of order o(M2).
This paper is organized as follows. Section II proposes an incompressible
lattice Boltzmann model and derives the incompressible Navier-Stokes
equation from the model. The validity of the proposed model is also briefly
discussed. Section III provides numerical results of simulations of the plane
Poiseuille flow and the 2-D Womersley flow using the incompressible
Boltzmann model. The Poiseuille flow is a steady flow, whereas the
Womersley flow is a unsteady one. Section IV discusses the results and
concludes this paper.

II. THEORY

In the following analysis, the derivation of the incompressible
Navier-Stokes equation is presented via an example of the 9-bit lattice
BGK model in two-dimensional space. It should be pointed out that the
approach is applicable to other lattice Boltzmann models in either two- or
three-dimensional space in general.

The 9-bit lattice BGK model evolves on the two-dimensional square
lattice space with the following 9 discrete velocities:

where c = dx/S,, and Sx and dt are the lattice constant and the time step
size, respectively. Figure 1 show the velocities of the 9-bit model. The
evolution equation of the system is

where i is the dimensionless collision relaxation time, and the equilibrium
distribution function, f(eq), is given by:
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with the weight coefficient

It is noted that, in the above equilibrium distribution function,

It is well understood that in an incompressible fluid the density is
(approximantly) a constant, say />„, and the density fluctuation, dp, should
be of the order O(M2) in the limit of M->0. (9) If we explicitly substitute
p = p0 + Sp into the equilibrium distribution function, f(eq), and neglect the
terms proportional to Sp(u/c), and 5p(u/c)2 , which are of the order O(M3)
or higher, then the equilibrium density distribution function becomes

The above distribution function is the equilibrium distribution function of
the incompressible lattice Boltzmann model. Clearly, the remaining terms
in the above equation are of the order O(M2) or lower order. It should be
stressed that the approximation made here is fully consistent with the
second order small velocity expansion (or low Mach number expansion up
to the second order) in the Chapman-Enskog analysis of LBE models.

Since it is a common practice to use the pressure, p, as an independent
variable in the incompressible Navier-Stokes equation, we introduce a
local pressure distribution function

where cs is the sound speed, and cs = c/^/3 for the 9-bit model. Accordingly,
the evolution equation of the LBE system, Eq. (2), becomes

where
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p = c2p, and p0 = c 2 p 0 . With the p-representation, the pressure, p, and the
velocity, «, are given by

The incompressible LBE model proposed here consists of Eqs. (5) and (6).
Through the Chapman-Enskog procedure, the incompressible Navier-

Stokes equations derived from the incompressible lattice Boltzmann model
are (see Appendix for details):

where P = p / p 0 , and the kinetic viscosity

It should be noticed that Eqs. (9) are the same equations used to solve
incompressible viscous Navier-Stokes equation by a finite difference method.(10)

Comments are in order at this point to justify the validity of the LBE
model proposed here, which leads to Eqs. (9), to simulate incompressible
Navier-Stokes equations. To do so, let us rewrite Eq. (9a) in a dimen-
sionless form as follows:

where P' = P/c 2 , t' = t/T, V = LV, «' = u/cs, and L and T are characteristic
length and time, respectively.

Clearly, in the case of steady flow, dP/dt = 0, thus the condition for
incompressible flow, V • u = 0, is satisfied exactly. Therefore, the only condi-
tion one must satisfy in numerical simulations of incompressible flow is

In practice, the condition M<0.15 is usually maintained in numerical
simulations by LBE method.
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As to the case of unsteady flow, an additional condition must be
satisfied. From Eq. (10), one can immediately see that in order for the
dP'/dt' term to be negligible, the following condition must be satisfied(11):

The physical significance of the above inequality is rather clear. The time,
T, during which the flow field undergoes a macroscopic change (in the
range of the distance L) must be greater than the time, L/cs, taken by a
sound signal to travel the distance L, so that the propagation of interac-
tions (by means of pressure wave or density fluctuation) in the fluid may
be regarded as instantaneous (in the time scale of temporal variation of
flow field).(11) Therefore, in the LBE method, the temporal variation of
driving pressure should not be too fast for the above reason, and the
spatial variation of pressure (or density) should not be too large for the
reason of Eq. (11). Thus both conditions of Eqs. (11 ) and (12) must be
satisfied simultaneously in simulations of unsteady incompressible flows.

III. NUMERICAL RESULTS

All the simulations described in what follows were performed on IBM
RISC System/6000 590 workstations at Los Alamos National Laboratory.

A. Steady Flow: Plane Poiseuille Flow

Numerical simulations for the plane Poiseuille flow driven by either a
pressure gradient or a fixed velocity profile at the entrance of channel were
carried out to test the validity of the incompressible LBE model. Figure 1
shows a schematic diagram of the setup in the simulation.

At the entrance of channel (upstream), two types of boundary con-
ditions are implemented: one is a constant pressure boundary condition,
the other is a fixed velocity profile boundary condition. At the exit

Fig. 1. All possible velocities for the 9-bit lattice BGK model on square lattice. This figure
also shows the arrangement for the plane Poiseuille tlow in simulations.
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(downstream), a constant pressure boundary condition is applied. For the
constant pressure boundary condition, the values of pressure at the
entrance and the exit are set to be 1.1 and 1.0, respectively. For the fixed
velocity boundary condition at the entrance, the horizontal velocity, ux,
has a parabolic profile with maximum Umax = 0.1, whereas the vertical
velocity, u,., is zero. At the two parallel walls, a non-slip boundary condi-
tion(12) is applied. The system size is Nx x Ny = 17 x 5. Two stationary walls
are located at y = 0 and y = N y — 1 , and the entrance and the exit are set
at x = 0 and x = Nx — 1, respectively. The initial condition for the simula-
tions is M = 0 in the interior of the channel.

Three different values of T, 0.75, 1.0, and 2.0, have been used in the
simulations. Because the similarity of the results, only the ones with
T — 0.75 are presented here. The viscosity is therefore equal to 1/12 % 0.0833
with c5v = (S, = 1. A number of initial iterations is run to reach the steady
state. The criterion of steady state is set by

where the summation is over the entire system. It usually takes a few
thousand iterations to reach a steady state depending on the value of the
viscosity and the boundary conditions.

Two types of measurements were taken in the simulations. One is the
measurement of velocity u at several cross sections. The other is the
measurement of pressure along the channel. All the measurements were
taken after the steady state is attained.

Figure 2 shows the velocity profiles of ux, with both the constant
pressure and the parabolic velocity profile boundary conditions at the
entrance. The velocity profiles were measured at three different cross-sec-
tions at x = 4, 8 and 12, respectively. The velocity profiles with the pressure
gradient boundary condition (symbol O) are normalized by the maximum
velocity along the center line of the channel

where L y (=4) and LX( = 16) are the channel width and length, P1( = 1.1)
and P2( = 1.0) are the pressure at the entrance and the exit, respectively,
and the average density p0 = 3.0 in the simulations. As to the velocity
profiles with the fixed velocity boundary condition (symbol +), they are
normalized by the maximum velocity at entrance. Two types of the bound-
ary conditions, i.e., that of a constant pressure and of a fixed parabolic
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Fig. 2. The velocity profiles of u x ( y ) for the Poiseuille flow, with both boundary conditions
of a constant pressure (O) and a fixed parabolic velocity profile of ux( + ) at the entrance. The
profiles of u x ( y ) are measured at x = 4, 6, and 12, respectively. All the profiles are normalized
with the appropriate maximum velocity Umax. The solid lines in the figure are the parabolic
profile of u x ( y ) given at the entrance and normalized by Umax. Note that the velocity profiles
remain unchanged along the channel.

velocity profile, are equivalent in this case because of the above equation.
As shown in Fig, 2, the numerical results agree with the analytical results
(the solid lines) exactly.

The vertical component of the velocity, uy, was also observed in all the
simulations. The magnitude of uy, is always smaller than 10-10 for all cases
shown here.

Figure 3 demonstrates the pressure measurements along three horizon-
tal lines, y = 0, 1, and 2 (the center line of the channel). The solid line in

Fig. 3. Pressure distribution along the channel for the Poiseuille flow. Pressure, p, are
measured at y = 0, 1, and 2, respectively. There are two sets of symbols to represent the results
with different boundary condition at the entrance (D, A, and O for the constant pressure
boundary condition, and +, x, and * for the fixed velocity boundary condition). The
measurements of p at y = 1 are taken at x = 0, 3,..., 12, and 15; that at y= 1 are taken at
x= 1, 4,..., 13, and 16; and that at v = 2 are taken at x = 2, 5,..., 11, and 14.
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the Figure is the analytic result. Clearly the numerical results agree with
the analytic ones exactly for both cases with different boundary conditions.
Note that the results shown in Fig. 3 are not normalized.

The combination of results shown in Figs. 2 and 3 shows that, not
only the velocity profiles are correct (parabolic shape) along the channel,
but also the maximum velocity of the profile is quantitatively correct.
Furthermore, the pressure distribution is uniform across the channel width,
and linear along the channel length. All the numerical results agree with
the analytic results of the Navier-Stokes equation within the machine
accuracy ( ~ 1 0 - 1 0 ) . The good agreement between the numerical and
analytic results is not a surprise. As shown in our analysis, the model
should work well under the condition M <^ 1. In this particular simulation,
Mmax = Umax/cs = 0.15 73 * 0.26 < 1.0.

B. Unsteady Flow: 2D Womersley Flow

The two-dimensional Womersley flow (pulsatile flow in two-dimen-
sional channel)(13, 14) is employed to validate the model for unsteady flow.
The geometric configuration of the Womersley flow is identical to that of
the plane Poiseuille flow, but the flow is driven by a periodic pressure
gradient at the entrance of the channel.

Assuming that the flow is laminar, then the Navier-Stokes equation
for the flow becomes:

where the pressure gradient driving the flow is given by:

with an amplitude A and a frequency u>. The solution of the above equa-
tion is:

where /I is given in terms of the Womersley number, a, as follows:

822/88,3-4-26
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We first conducted a set of simulations of measuring velocity profiles
across the channel at different times. In the simulations, the system size
is NxxNy = 21 x21, the period of the driving pressure is T= 1000
(co = 2n/T), and the magnitude of total pressure drop along the channel is
AP = 0.001 (A = AP/LX), and the pressure at the exit is set to be 1.0. The
initial state of velocity field is always set to be zero everywhere in the
system. The calculation of velocity field always began with 10T initial steps
to attain convergence criterion:

where the summation is over the entire system.
Figure 4 shows the velocity profiles across a section of the channel at

x= 10 at four different times after the initial run: t=T/8 , T/4, 3T/8, and
T/2. The relaxation time T is chosen to be 0.6178. With the above
parameters, the Womersley number a~4.0. The agreement between the
numerical and analytical results given by Eq. (16) is excellent.

Figure 5 shows the normalized maximum velocity along the center of
the channel, U c /Um a x , where Umax is given by Eq. (13), and the phase lag
of the velocity field, 8 (normalized by p), as functions of the Womersley
number, a. The Womersley number, a, is varied via adjusting T. The
analytic results represented by the solid (T/p) and the dashed (U c /U m a x )
line in the figure are derived from Eq. (16). The numerical results are in
excellent agreement with the analytic ones.

Fig. 4. Normalized velocity profiles, ux(y, t)/Um a x , of Womersley flow with aw4.0. The
measurements were taken at the middle of the channel, x= 10, at fours different times after
initial run at: t = T/8 ( + ), T/4 ( O ), 3T/8 ( x ), and r/2 ( D ) . The solid lines are analytic result
given by Eq. (16).
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Fig. 5. Normalized Maximum velocity at the center of the channel, U,./Umax , ( O ) , and the
phase lag of the velocity (D) normalized by n, 0/n, vs. the Womersley number a. The solid
line (0/n) and dashed line (U,/Um a x) are analytic result obtained from Eq. (16).

To compare the incompressible LBE model with previous models, we
compute the relative global error in velocity field of simulations against
analytical results as a function of the pressure drop, AP (or the maximum
Mach number Mmax). The parameters in this particular simulation are:
T=2000, T = 0.75, and N x xN y , = 21 x 21. Table I shows the error
measured with L2 norm:

where the summation is over the entire system, u0 is the analytic solution
given by Eq. (16), and q = 2. In Table I, L] is the relative global error of

Table 1. The Relative Global Error of Velocity Field in 2-D Womersley Flow"

AP

0.001
0.005
0.01
0.02
0.05

Mmax

0.0094
0.047
0.094
0.188
0.471

L2

0.29%
0.63%
1.20%
2.34%
5.73%

L2

0.29%
0.72%
1.54%
3.63%

12.50%

aThe system size Nx x Ny = 21 x 21. The relaxation time r = 0.6178. AP, Mmax are the
magnitude of total pressure gradient and maximum Mach number, respectively. L] and L2

C

are the relative global error, measured with L2 norm, by using incompressible and com-
pressible LBE model, respectively.
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the simulation by using the incompressible LBE model proposed in this
paper, whereas L2

C is the error by using the existing LBE model. The
measurements of the error were conducted similarly to the preceding
simulations. All simulations for the measurement began with an initial con-
dition of zero velocity every where, and an initial run of 10T steps, with a
given value of AP, to obtain u. Then the analytic solution, uO, at the corre-
sponding time can be constructed according to Eq. (16). The error was
then computed according to Eq. (18). The measurement was repeated by
varying the value of AP. We also changed the number of steps in the initial
run to detect time-dependence of the error. Our observation shows that the
error is time-independent, although it fluctuates slightly.

It is known that to maintain the incompressible limit, the density fluc-
tuation dp must be of the order O(M 2 ) . ( 9 ) Therefore, with small pressure
drop AP, the errors of the two models are comparable, because density
variation dp is very small such that the error due to compressible effect is
negligible compared to error due to other effects (e.g., discretization) under
the circumstance. However, the error in previous LBE model (L2

C) grows
faster as AP increases. (Assuming \\du\\ ~aMJnax, then the values of y for L2

and L2
C are 0.9591 ± 0.0074, and 1.242 + 0.041 in the range 0.047 ^ Mmax ^

0.471, respectively.) In the simulation, because T = 2000 $>LX/cs = 20,/3«
35, therefore the compressible effect due to the time variation of pressure
field, which is proportional to Lx/csTx 10 - 2 , is in fact negligible.

We have also observed that as T decreases, the error increases. Figure 6
shows the dependence of the relative global error in L2 norm on T. In

Fig. 6. L2-normed relative global error of u vs. 1/T for the Womersley flow. Symbol D
presents the numerical results, and solid line presents the least-squared fitting of the data. The
parameters in the simulations are: a = 1.94 and Mmax = 0.0094. With these given values of a
and mmax, r = (T+ 1000)/27, and AP = 2/T. The values of T used in the simulation are 250,
500, 1000, 2000, and 4000.
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this set of simulations, a = 1.94 and Mmax = 0.0094. With above given
values of a and Mmax,

The values of T used in the simulation are 250, 500, 1000, 2000, and 4000.
Our analysis shows that the error grows as T-2. The numerical result in
Fig. 6 gives the value of the exponent 2.008 + 0.012. We also measured the
L1-normed error. The value of the exponent measured from the L'-normed
error (q=1 in Eq. (18)) is 1.993 + 0.017.

IV. DISCUSSION AND CONCLUSION

We have proposed a lattice Boltzmann model for the incompressible
hydrodynamics and derived the incompressible Navier-Stokes equations
through the Chapman-Enskog procedure with rigor. The compressible
effect has been reduced in the incompressible lattice Boltzmann model. This
is accomplished by eliminating the terms of the order o(M2), where M is
the Mach number. The approximation made is entirely consistent with the
second order low Mach number expansion in the Chapman-Enskog
analysis of LBE models.

We have also performed numerical simulations for the plane Poiseuille
flow (steady flow) with different boundary conditions at the entrance, and
the 2-D Womersley flow (unsteady flow) using the incompressible
Boltzmann model. For the Poiseuille flow, we have computed the velocity
profile in several cross-sections of channel, and measured the pressure dis-
tribution along and across the channel. Our simulations have shown that
the velocity profile is remained unchanged (as a parabolic profile) along
the channel, and that the pressure distribution is linear along the channel
and uniform across the channel. All these results are simultaneously in
excellent agreement with the analytical solutions of the Navier-Stokes
equation. Our numerical results are accurate within the machine precision.

As to the Womersley flow, the velocity profile as a function of time
and space was computed. The phase lag of the velocity field and the
amplitude of the velocity profile as functions of the Womersley number, a,
were also measured. All these numerical results accurately agreed with
analytic results obtained in Eq. (16).

The model proposed here is mathematically equivalent to the model in
ref. 8 provided that p0 = 1. However, it is important to point out the distinc-
tion between the incompressible LBE model proposed here and the previous
ones based upon they'-representation (j = pu). (6 8) First of all, the previous
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models based upon the j-representation(6-8) can not lead to the genuine
incompressible Navier-Stokes equations in general. Second, the argument
of the j-representation is only valid for steady flows. In our model, the
compressible effect of the order o(M2) is explicitly eliminated. The model
proposed here is valid for steady as well as unsteady flows.

In conclusion, we have developed an incompressible LEE model to
recover the incompressible Navier-Stokes equations. The compressible
effect in the previous LBE models has been reduced effectively. Further-
more, our incompressible LBE model is valid in general for both steady
and unsteady flows. We hope this work would encourage wider applica-
tions of the LBE method in hydrodynamic simulations in the CFD com-
munity.

APPENDIX: CHAPMAN-ENSKOG DERIVATION OF THE
NAVIER-STOKES EQUATION

By introducing the following expansions(9):

where e = S, and Dt = (d, + e x - V ) , we can rewrite the lattice Boltzmann
equation

in the consecutive order of the parameter e as follows:
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where Dtn = (d tn + e„ • V), and note that Eq. (A3b) has been substituted into
Eq. (A3c). The distribution function fa is the normal solution which is
constrained by:

where the equilibrium f0' is defined by Eq. (4) (for the 9-bit model):

Also, fa is a Chapman-Enskog ansatz, i.e., the time dependent of fa is
through the hydrodynamic variables p and u (and temperature T if
applied). Therefore,

For the 9-bit model, the tensor

where ex,i is the projection of ex on i-axis (i = x, or y), has the following
properties:

because
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where dij and dijkl are the Kronecker delta with two and four indices,
respectively, and

Also, E(2n+1) = 0 for n = 0, 1,....
With the above properties of the tensor E(n), we have:

The moments of Eq. (A3b) lead to the Euler equations

where /7(0) = ̂ 0ieaeaf
(°> is the zeroth-order momentum flux tensor. With

77[0) given by Eq. (A11c), the above equations can be rewritten as:

where P = c2
sp/po is the normalized pressure, and cs = c/^/3. It should be

pointed out that the divergent term is canceled out exactly in other
standard LBE models, whereas in the model here, the divergent term,
«V • «, remains in the momentum equation. Nevertheless, with Eq. (A13a),
the divergent term in Eq. (A13b) is indeed of order O(M3), which is a
higher order term in contrast with other terms in Eq. (A13b).
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The moments of Eq. (A3c) lead to the following equations:

where 77(1) = £* e^e^f^' is the first-order momentum flux tensor. With the
aid of Eqs. (A11) and (A13), we have:

where Vi = d/dx/. In the above result, the terms of O(u 3 ) should be neglected,
in order to be consistent with the small velocity expansion of f(eq) up to the
order of 0(u2} (Note that O(u) = O(M), therefore we take the liberty to
interchange these notations.) Also, the terms of ui, V,/? should be neglected
because they are of the order O(M3). Therefore,

where the term V-M has been neglected because it is of O ( M 2 ) due to
Eq. (A13a), and the viscosity

Combining the zeroth and first order results together with dt =
dt0 + s dt1, and setting the expansion parameter E = 1 eventually, we have



It should be stressed that in deriving Eq. (A17b), an approximation is
made to neglect the terms of higher order than the convection term of
order O(M2), in particular, the divergent term (compressibility).
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the incompressible Navier-Stokes equations accurate to the order of
O(M2) in continuity equation and O(M3) in momentum equation:


